
Cancer is a genetic disease, with the growth of tumour cells initi-
ated by mutations that activate oncogenic drivers. This process 
is combined with the genetic or non-genetic activation or inac-

tivation of genes that promote or suppress the proliferation of tumours. 
In many cancers, oncogenesis is accompanied by the accumulation of 
mutations, which can provide a selective advantage to populations of 
cancer cells by increasing their degree of genetic diversity, accelerating 
their evolutionary fitness. Yet this diversity comes at a cost: the further 
a cancer cell diverges from a normal cell, the more likely it is to be rec-
ognized as foreign by the immune system. Although long considered a 
possibility, it has been demonstrated only in the past five years that the 
mutational burden of tumours contributes to immune recognition of 
cancer and that it may, at least partly, determine a person’s response to 
cancer immunotherapy1–4.

The role of the immune system in cancer remained unappreciated for 
many decades because tumours effectively suppress immune responses 
by activating negative regulatory pathways (also called checkpoints) 
that are associated with immune homeostasis or by adopting features 
that enable them to actively escape detection5–7. Two such checkpoints, 
cytotoxic T-lymphocyte protein 4 (CTLA4) and programmed cell death 
protein 1 (PD-1), have garnered the most attention so far. CTLA4 is a 
negative regulator of T cells that acts to control T-cell activation by com-
peting with the co-stimulatory molecule CD28 for binding to shared 
ligands CD80 (also known as B7.1) and CD86 (also known as B7.2). 
The cell-surface receptor PD-1 is expressed by T cells on activation 
during priming or expansion and binds to one of two ligands, PD-L1 
and PD-L2. Many types of cells can express PD-L1, including tumour 
cells and immune cells after exposure to cytokines such as interferon 
(IFN)-γ; however, PD-L2 is expressed mainly on dendritic cells in nor-
mal tissues. Binding of PD-L1 or PD-L2 to PD-1 generates an inhibitory 
signal that attenuates the activity of T cells. The ‘exhaustion’ of effector 
T cells was identified through studies of chronic viral infection in mice 
in which the PD-L1/PD-1 axis was found to be an important negative 
feedback loop that ensures immune homeostasis; it is also an important 
axis for restricting tumour immunity.

Although blocking these checkpoints is known to elicit antitumour 
responses in mice8–11, clinical trials are now providing evidence of their 
importance in cancer. Specifically, for antibodies that block the inter-
action between PD-L1 and PD-1, clinical responses to monotherapy 
have been seen across a wide range of solid and haematologic cancers12. 

Importantly, the responses are often durable, lasting years or indefi-
nitely, and occur without causing serious toxicity in most people. These 
results suggest that many people with cancer have pre-existing T-cell-
mediated immunity that is restrained by the PD-L1/PD-1-induced sup-
pression of T cells. They also emphasize the role of immunosuppression 
as a main impediment to the series of steps that is required for effective 
anticancer responses — the cancer–immunity cycle13. However, the 
PD-L1/PD-1 axis cannot solely account for restraining the immune 
response. Not only do other negative regulators exist, but the immune 
profile of an individual reflects the contribution of an array of factors, 
including the intrinsic properties of a tumour (for example, cytokine 
secretion or genetic composition) and extrinsic factors such as the gut 
microbiota, the presence of infection or exposure to sunlight. These 
elements combine to produce a ‘cancer–immune set point’, which can be 
defined as the equilibrium between the factors that promote or suppress 
anticancer immunity. The set point therefore represents the threshold 
that must be surpassed for a person with cancer to respond to immu-
notherapy. This is a useful concept as the responses of people (or even 
mice) with overtly similar tumours can vary considerably.

The mechanisms that underlie cancer immunotherapy differ con-
siderably from those of other approaches to cancer treatment. Unlike 
chemotherapy or oncogene-targeted therapies, cancer immunotherapy 
relies on promoting an anticancer response that is dynamic and not 
limited to targeting a single oncogenic derangement or other autono-
mous feature of cancer cells. Cancer immunotherapy can therefore 
lead to antitumour activity that simultaneously targets many of the 
abnormalities that differentiate cancer cells and tumours from normal 
cells and tissues.

The pace of cancer immunotherapy clinical studies is such that they 
have outstripped our progress in understanding the underlying basic 
science. However, this situation has created the opportunity to combine 
emerging scientific and clinical insights in a synergistic fashion that 
will not only inform our knowledge of the basic cellular mechanisms of 
cancer immunity, but will also provide guidance for the identification 
of new targets, the conduct of future clinical trials and the crafting of a 
framework for making treatment decisions on a personalized basis14. 
This Review will synthesize what has been learned with relevance to 
each of these considerations to define the most important challenges 
and opportunities, as well as to evaluate the factors that contribute to 
the cancer–immune set point.
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The tumour genome as a driver of cancer immunity
The immune response to cancer is dependent on T cells that are specific 
for cancer-associated antigens. The idea that T cells can recognize new 
epitopes (neoepitopes) generated by mutation or transcriptional aberra-
tions in cancer originated in the 1980s from the work of Thierry Boon, 
Hans Schreiber and others, who identified the first mutant T-cell 
neoepitopes in mice15–17.

Perhaps owing to the difficulty of DNA sequencing at that time, 
interest in T-cell epitopes turned from mutated antigens to the cancer–
testis antigens, which are expressed both in germline cells and in many 
cancers18,19. Well-studied examples include cancer/testis antigen 1 (also 
known as NY-ESO-1) and melanoma-associated antigen 3 (MAGE-A3). 
Cancer–testis antigens contain epitopes for both T cells that carry the 
CD4 antigen and those that carry CD8 that have been detected in people 
with cancer20–22. Similarly, differentiation antigens, including abundant 
melanosome-specific proteins such as glycoprotein 100 and tyrosinase, 
have also been found to generate T-cell epitopes in some people. How-
ever, the use of these antigens for therapeutic vaccination has not been 
successful so far23.

By contrast, results from mouse syngeneic tumour models demon-
strate that point mutations can yield mutant antigens that prime T-cell 
responses to generate protective endogenous immunity or immunity 
in the setting of a therapeutic vaccine, achieved by the injection of syn-
thetic peptides or messenger RNA24–27. The recognition of these mutant 
antigens by T cells is relatively inefficient, however. A study of the syn-
geneic tumour model MC38 found only 10% of nonsynonymous point 
mutations generated peptides that bound to major histocompatibil-
ity complex (MHC) class I molecules with high affinity; furthermore, 
only a fraction of these peptides were highly immunogenic when tested 
by vaccination27. Immunogenic peptides include peptides containing 

mutations that are exposed to the T-cell receptor or peptides with muta-
tions that create new anchor residues that increase binding affinity for 
MHC class I molecules (Fig. 1). Although much of the current focus 
is on point mutations, frameshift mutations or insertion or deletion 
mutations may create new protein or peptide sequences called neoan-
tigens that are even more immunogenic owing to their greater sequence 
divergence. It will be crucial to better understand the determinants of 
immunogenicity as, ultimately, these will determine whether a given 
neoantigen is recognized as foreign by the immune system.

Mutant peptides that bind MHC class I or MHC class II molecules 
can generate protective immunity25,28–30, although the role of T cells 
that express CD4 in the anticancer immune response is still uncertain. 
Clearly, CD4-carrying T cells are important in helping to drive both 
the antibody response and that of cytotoxic CD8-expressing T cells, 
and they can produce IFN-γ, thereby contributing to an inflamma-
tory environment that favours antitumour immunity. T cells that carry 
CD4 have also been reported to mediate cytotoxicity; indeed, some 
tumours such as melanoma can express MHC class II molecules, often 
on exposure to IFN-γ, and may be the direct targets of cytotoxic CD4-
expressing populations.

Direct evidence that mutant epitopes are recognized by T cells in can-
cer in humans has been provided by studies in which the specificities of 
tumour-infiltrating lymphocytes were determined by large-scale screen-
ing. Several such reports in melanoma identified both CD4- and CD8-
expressing T cells that were specific for mutant epitopes31–33. The adoptive 
transfer of antigen-specific tumour-infiltrating lymphocytes into cancer 
patients has been shown to correlate with tumour regression34–38.

Together, these results indicate that the main targets of protective 
anticancer T cells are the genetic alterations associated with all forms 
of cancer. Although this does not eliminate the possible contribution 

Figure 1 | Cancer mutations, neoantigens and immunogenicity. The 
development of different types of mutations during the oncogenic process 
can lead to the generation of new protein or peptide sequences, which 
are referred to as neoantigens. These may be presented on the surface of 
cancer cells bound to MHC class I molecules, if they contain appropriate 
MHC class I binding motifs. T cells may recognize neoantigens if they are 
presented when bound to a MHC class I molecule and if the mutant amino 
acids project towards the T-cell antigen receptor (TCR). In the hypothetical 
examples shown here, a sequence of nine amino acids (ILQLMPFSV) acquires 
alterations (red) generated by various mutations. The peptide is then cleaved 
from the parental protein and becomes bound to an MHC class I molecule 
(using a human leukocyte antigen (HLA)-A201 motif, in this example). In 

the case of a non-immunogenic point mutation, the mutated peptide may 
bind poorly to the MHC class I molecule or might not contain mutant amino 
acids at the appropriate position. The mutated amino acids might also not 
be displayed outwards, towards the TCR (shown). In an immunogenic point 
mutation, the altered amino acid may enable binding of the mutated (and 
now immunogenic) peptide to an MHC class I molecule through the creation 
of an ‘anchor’ residue (top), or it may project towards the TCR (bottom). An 
insertion or deletion (indel) mutation can create similarly immunogenic 
peptides through the juxtaposition of two peptide sequences. And a 
frameshift mutation creates entirely foreign peptide sequences, which may 
also be immunogenic when the new peptide sequence binds to an MHC class I 
molecule and creates a mutant projected amino acid. X, any amino acid.
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of other cancer-associated antigens to cancer immunity, it does lend 
credence to the concept that the large number of passenger mutations 
that occur in cancer form the most probable targets for T cells. A further 
class of cancer-associated neoantigen occurs in cancers that are charac-
terized by a viral aetiology, most commonly human papillomavirus 16. 
Such viral antigens are foreign to the immune system and have proved to 
be good targets for therapeutic vaccination, especially in premalignant 
lesions of the genitourinary tract19. Tumour genomes may also contain 
and possibly reactivate endogenous viruses or transposable elements 
as a consequence of epigenetic alterations39. Because central tolerance 
has not been developed for these antigens, they might also prove to 
be targets of protective T cells that merit further investigation. As a 
driver of anticancer T-cell responses, the mutational neoepitope load 
of a given tumour must therefore be considered an important element 
of the cancer–immune set point.

The essential role of T-cell memory
Curative treatment of tumours can render individual mice refractory 
to subsequent challenge with the same — but not different — tumours, 
suggesting that the mice generate a memory response to tumour-
associated antigens40. In further support of a role for memory T cells in 
antitumour responses, tumour-infiltrating lymphocytes that express 
CD4 or CD8 extracted from experimental tumour models typically have 
the features of memory T cells and can possess an activated or exhausted 
phenotype, expressing markers such as PD-1, T-cell immunoglobulin 

and mucin-domain containing protein 3 (TIM-3) and lymphocyte acti-
vation gene 3 (LAG-3).

The priming of T cells for the generation of effector T cells and mem-
ory T cells has been well studied in response to infectious agents, and 
it is probable that the same basic features also apply in the context of 
cancer. Naive T cells, which may be primed in tumour-draining lymph 
nodes or in tertiary lymphoid structures in solid tumours41, yield both 
effector and memory T cells that give rise to terminally differentiated 
effectors such as cytotoxic T cells (Fig. 2a), which may occur in the 
blood, lymphoid organs, tissues or tumours. As exposure to an antigen 
is prolonged, T cells upregulate activation markers, including negative 
regulators such as PD-1, which leads to the appearance of effector T cells 
with increasing degrees of functional exhaustion.

Recent evidence, especially from the lymphocytic choriomeningitis 
virus mouse model of chronic virus infection, suggests that priming first 
yields a self-renewing population of short-term memory T cells. These 
cells are characterized by a high level of expression of the transcription 
factor T-bet and by a low level of expression of eomesodermin (EOMES) 
and PD-1 (refs 42 and 43).

In mouse models of cancer, a T-cell population similar to the short-
term memory T cells has also been observed in tumour-bearing ani-
mals that were treated with inhibitors of the mitogen-activated protein 
(MAP) kinase pathway (known as MEKi)44. Although, as expected, 
these inhibitors blocked the priming of naive T cells, there was a tran-
sient accumulation of tumour-infiltrating lymphocytes expressing 

Figure 2 | Compartmentalization of cancer–immune 
biomarkers. Evidence of an anticancer immune response may be detectable 
in several biological compartments, including the spleen, the lymphatic 
system, bone marrow, tumour-draining lymph nodes, the blood and 
tumours. a, The development of CD8-expressing populations of T cells, 
including effector T cells, memory T cells and exhausted T cells, is shown, 
with the expression of relevant proteins indicated for each. Naive CD8+ 
T cells generally reside in the lymph nodes and the spleen. After exposure to 
and activation by an antigen, short-term memory T cells can proliferate and 
differentiate into effector T cells, effector memory T cells, central memory 
T cells (not shown) and cytotoxic T cells. With chronic antigen exposure, 
effector T cells can become progressively exhausted; conceivably, only 
freshly exhausted cells that express relatively low amounts of PD-1 (PD-1med) 
are recoverable on treatment with anti-PD-L1/PD-1 therapies, whereas 
‘hyperexhausted’ effector T cells that express high levels of PD-1 (PD-1high) 
as well as other markers of activation (for example, LAG-3, TIM-3 or TIGIT) 
may be unrecoverable. Hyperexhausted effector T cells may represent T cells 

that are committed by chronic TCR stimulation to a pathway of TCR-induced 
apoptosis. Anti-PD-L1/PD-1 treatment or treatment with inhibitors of 
the mitogen-activated protein kinase pathway (MEKi) may block or slow 
T-cell exhaustion by attenuating the strength of the TCR signal. EOMES, 
eomesodermin; TNF, tumour-necrosis factor. b, The lymph nodes, the blood 
and tumours represent the main compartments in which elements of the 
anticancer immune response can be detected. Biomarker sampling in these 
compartments must take into account the dynamic processes that are involved 
in cancer immunity, including the timing of the activation of anticancer 
T cells, the rate of migration of anticancer T cells from the lymph nodes to the 
blood (kmig), the rate of T-cell infiltration into tumours (kinf) and the rate of 
T-cell efflux from tumours into the blood (keff). The interrogation of immunity 
may be able to separate anticancer immunity (Δ2) from systemic immunity 
against non-cancer cells (Δ1), depending on the specific biomarker under 
investigation. Other factors that are important for biomarker interpretation 
include the change in tumour size with time (δvol/δt) and the rate of apoptosis 
of anticancer T cells (kapop).
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CD4 or CD8 (ref. 45) that exhibited lower levels of PD-1 as well as 
elevated levels of T-bet and low levels of EOMES, indicating that these 
cells were less exhausted than T cells from control tumours44. Although 
PD-L1/PD-1 blockade has also been shown to restore the functionality 
of exhausted T cells46, evidence suggests that less exhausted populations 
may be the target population. Despite not yet being demonstrated in 
people with cancer, the proposed self-renewing population of short-
term memory T cells that express high levels of T-bet and low levels 
of EOMES or the population of CD8-, CXCR5- and TCF1-expressing 
short-term memory T cells described in mice infected with lymphocytic 
choriomeningitis virus may selectively proliferate after PD-1 blockade, 
thereby expanding the pool of antigen-specific T cells47–49.

Why is this an important consideration? As well as the need to define 
anatomic sites of PD-L1/PD-1 inhibition, the fact remains that even 
when individuals respond, the tumour burden often fails to disappear 

entirely. Although this may reflect the development of alternative mech-
anisms of immunosuppression50,51, or the evolution of the tumour to 
lose immunodominant epitopes38 or to acquire mutations that facili-
tate resistance50, a sustained partial response might also suggest that a 
new equilibrium may have been reached between the tumour and the 
greater number of antitumour T cells that are produced52,53. Therefore, 
even after successful anti-PD-L1/PD-1 therapy, a putative self-renewing 
or expanding memory T cell compartment may be too small to keep 
pace with tumour growth. In such instances, the continued priming of 
naive T cells may be needed to replenish and maintain the antitumour 
response. In support of this, the blockage of priming by long-term MEK 
inhibition in mice with tumours led to a loss of tumour-infiltrating lym-
phocytes and memory T cells44. In people with cancer, greater clearance 
of tumours has been observed when anti-PD-1 therapy is combined 
with anti-CTLA4 therapy54, possibly because of an increase the total 

Figure 3 | Cancer-immune phenotypes. Anticancer immunity in humans 
can be segregated into three main phenotypes: the immune-desert phenotype 
(brown), the immune–excluded phenotype (blue) and the inflamed phenotype 
(red). Each is associated with specific underlying biological mechanisms that 
may prevent the host’s immune response from eradicating the cancer. A tumour 
that is characterized as an immune desert can be the result of immunological 
ignorance, the induction of tolerance or a lack of appropriate T-cell priming or 
activation. Immune-excluded tumours may reflect a specific chemokine state, 
the presence of particular vascular factors or barriers, or specific stromal-based 
inhibition. Inflamed tumours can demonstrate infiltration by a number of 

subtypes of immune cells, including immune-inhibitory regulatory T cells, 
myeloid-derived suppressor cells, suppressor B cells and cancer-associated 
fibroblasts. Tumour-infiltrating lymphocytes that express CD8 may also 
demonstrate a dysfunctional state such as hyperexhaustion. Tumour cells 
in inflamed tumours can also express inhibitory factors, downregulating 
MHC class I molecule expression or other pathways that de-sensitize them to 
anticancer immunity. APC, antigen-presenting cell; B2M, β-2-microglobulin; 
IDO, indoleamine 2,3-dioxygenase; LN, lymph node; TAP, transporter 
associated with antigen processing; TDO, tryptophan 2,3-dioxygenase; TGF, 
transforming growth factor; VEGF, vascular endothelial growth factor.
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number of T cells caused by the removal of a checkpoint for T-cell pro-
liferation and priming.

Tumour-infiltrating lymphocytes from humans can also have the 
features of memory T cells55–58. One study found that a high frequency 
of CD8-carrying tumour-infiltrating lymphocytes were of the effec-
tor memory phenotype, which lack CD62L (L-selectin) but express 
the RO isoform of the antigen CD45, and also exhibited high levels of 
PD-1 and other markers of activated or exhausted T cells55. The fact 
that tumour-infiltrating lymphocytes extracted from humans can be 
expanded in vitro and re-administered with potential clinical benefit34–37 
further indicates that these cells were derived from memory T cells.

Which factors might limit the production of memory T cells? Even if 
sufficient epitopes exist and are loaded onto MHC molecules, the T-cell 
response itself may be insufficient to mediate tumour regression. The 
manner in which tumour cells die probably also affects the type of T-cell 
response that is generated. This is because some forms of cell death seem 
to be more immunogenic than others59,60. Understanding this issue will 
be crucial, as the ability of conventional or targeted therapies to generate 
one form or another of immunogenic cell death may facilitate the design 
of effective combination therapies61.

When a response to anti-PD-L1/PD-1 antibodies occurs, it most 
often reflects some level of prior T-cell immunity. This is consistent 
with the observed timing of increased numbers of T cells expressing 
CD8, the MHC class II molecule human leukocyte antigen (HLA)-DR 
and proliferation marker Ki-67 in the blood of cancer patients 1 week 
after beginning treatment with a PD-L1 inhibitory antibody62. However, 
neither these data nor the extent of the clinical response are necessar-
ily informative about the breadth or depth of the anticancer T-cell 
response, which has yet to be measured directly. Indeed, several factors 
contribute to the development of this response. Potential rate-limiting 
steps include the initial priming and expansion of T cells, their conver-
sion to memory and effector T cells and the fate and survival of effector 
T cells after they enter the tumour, where the abundance of antigens and 
immunosuppressive factors can trigger T-cell exhaustion and death.

Also of importance are the rates of trafficking of antigen-specific 
T cells from lymph nodes to tumours through the bloodstream (Fig. 2b). 
The rate constants that govern T-cell migration clearly have a crucial 
role in controlling the migration of tumour-infiltrating lymphocytes 
into certain types of tumour. Determining these values in people will 
be a challenge.

Correlates of the response to immunotherapy
As effective as immunotherapy can be, only a minority of people 
exhibit dramatic responses, with the frequency of rapid tumour shrink-
age from single-agent anti-PD-L1/PD-1 antibodies ranging from 
10–40%, depending on the individual’s indication12. Responses to other 
single-agent immunotherapeutics such as anti-CTLA4 antibodies or 
interleukin(IL)-2 are even lower63,64. A variety of factors contribute to 
determining whether a response occurs. However, before the underlying 
mechanisms can be considered, it is important to define the associated 
phenotypes that have been revealed by clinical studies. By examining his-
tological sections of tumour biopsies collected from patients before they 
received therapy, it is possible to distinguish three basic immune profiles 
that correlate with a person’s response to anti-PD-L1/PD-1 therapy14,51,62.

The first profile, the immune-inflamed phenotype (Fig. 3), is char-
acterized by the presence in the tumour parenchyma of both CD4- 
and CD8-expressing T cells, often accompanied by myeloid cells and 
monocytic cells; the immune cells are positioned in proximity to the 
tumour cells62,65–72. Samples from inflamed tumours may exhibit stain-
ing for PD-L1 on infiltrating immune cells and, in some cases, tumour 
cells62,69,70,73,74. Many proinflammatory and effector cytokines can also be 
detected by mRNA analysis in these sections of tumours62,69,70,72. This pro-
file suggests the presence of a pre-existing antitumour immune response 
that was arrested — probably by immunosuppression in the tumour bed. 
Indeed, clinical responses to anti-PD-L1/PD-1 therapy occur most often 
in patients with inflamed tumours62,67,70,75. However, a response is not 

assured in these individuals, which indicates that immune-cell infiltra-
tion is necessary but insufficient for inducing a response.

The second profile is the immune-excluded phenotype, which is 
also characterized by the presence of abundant immune cells. How-
ever, the immune cells do not penetrate the parenchyma of these 
tumours but instead are retained in the stroma that surrounds nests of 
tumour cells51,62,76,77. The stroma may be limited to the tumour capsule 
or might penetrate the tumour itself, making it seem that the immune 
cells are actually inside the tumour. After treatment with anti-PD-L1/
PD-1 agents, stroma-associated T cells can show evidence of activa-
tion and proliferation but not infiltration, and clinical responses are 
uncommon. These features suggest that a pre-existing antitumour 
response might have been present but was rendered ineffective by a 
block in tumour penetration through the stroma or by the retention 
of immune cells in the stroma. T-cell migration through the tumour 
stroma is therefore the rate-limiting step in the cancer–immunity 
cycle for this phenotype.

The third profile, the immune-desert phenotype, is characterized 
by a paucity of T cells in either the parenchyma or the stroma of the 
tumour14,51,62,65. Although myeloid cells may be present, the general 
feature of this profile is the presence of a non-inflamed tumour micro-
environment with few or no CD8-carrying T cells. Unsurprisingly, such 
tumours rarely respond to anti-PD-L1/PD-1 therapy62. This phenotype 
probably reflects the absence of pre-existing antitumour immunity, 
which suggests that the generation of tumour-specific T cells is the rate-
limiting step. The immune-desert phenotype and the immune-excluded 
phenotype can both be considered as non-inflamed tumours.
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Inflamed versus non-inflamed tumours
What is the basis for the three immune profiles observed in tumours? 
To a first approximation, differences between the profiles can be 
ascribed to whether tumours harbour an inflammatory microen-
vironment, which can reflect variations in a number of cellular and 
other factors (Fig. 4). The degree of inflammation can be gauged by 
the cellular content of the tumour — for example, the presence of 
immune cells, either in the parenchyma or at the invasive margin of the 
tumour78,79. Inflamed tumours also contain proinflammatory cytokines 
that should provide a more favourable environment for T-cell activa-
tion and expansion, including type I and type II IFNs, IL-12, IL-23, 
IL-1β, tumour-necrosis factor (TNF)-α and IL-2. However, it is unclear 
whether the presence of these cytokines is the cause or consequence of 
the cellular influx. The production of tropic chemokines by lympho-
cytes and myeloid cells is therefore likely to be an important feature of 
inflamed tumours.

Non-inflamed tumours generally express cytokines that are associ-
ated with immune suppression or tolerance. They can also contain cell 
types associated with immune suppression or tissue homeostasis. As 
well as regulatory T cells, these cells include the lesser characterized 
populations of myeloid-derived suppressor cells (for example, immature 
granulocytes) and tumour-associated macrophages, which are unacti-
vated and often called M2 macrophages. However, regulatory T cells are 
not associated uniquely with non-inflamed tumours as they typically 
accompany effector T cells into inflammatory sites and are important 

for maintaining immune homeostasis, even in the presence of an active 
antitumour immune response80,81.

Predicting response
The immune-inflamed phenotype correlates generally with higher 
response rates to anti-PD-L1/PD-1 therapy51,62,67,69–71, which suggests 
that biomarkers could be used as predictive tools. Most attention has 
been paid to PD-L1, which is thought to reflect the activity of effector 
T cells because it can be adaptively expressed by most cell types follow-
ing exposure to IFN-γ6,82. In an increasingly large clinical data set, it is 
becoming clear that the expression of PD-L1 in pretreatment biopsies 
facilitates enrichment with people who are most likely to respond to 
antibodies against PD-L1 or PD-1 (refs 62, 69, 70, 73, 75, 83 and 84). 
PD-L1 expression also correlates strongly with various markers of 
active cellular immunity, including IFN-γ, granzymes and CXCL9 and 
CXCL10. The presence of these biomarkers or others such as T cells that 
carry the CD3 antigen or tumour mutational burden may also enrich 
for responders1,2,67,85. When used in combination with PD-L1 expres-
sion, these biomarkers may enhance predictive power86. Clinically, it 
will be important to select individuals who are most likely to respond 
to anti-PD-L1/PD-1 therapies given as single agents rather than those 
who might require combination therapy14,51, which could add consid-
erable toxicity54. This therapeutic approach, which combines a set of 
specific biomarkers with a selection of potential therapeutic options, is 
referred to as personalized cancer immunotherapy. Scientifically, the 
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identification of predictive biomarkers will greatly expand our under-
standing of the mechanisms of cancer immunity, providing information 
on the immune context in individuals.

An important consideration when using PD-L1 and other biomark-
ers to predict response to treatment is that the degree of inflamma-
tion can vary widely and will probably reflect a variety of genetic and 
environmental factors that may change with time. Their utility could 
therefore be confounded by temporal changes in expression and the 
timing of biopsy collection. It is assumed that archival specimens will be 
less accurate because the people from whom they were taken may have 
undergone several lines of therapy since the biopsies were performed. 
However, an analysis in 2015 found that the frequency and intensity 
of PD-L1 immunohistochemistry signals were similar in fresh versus 
archival specimens and primary versus metastatic lesions in the same 
individuals87. These data suggest that tumours may have characteristic 
immune profiles that are at least partially preserved in time and location. 
Despite the use of treatments that may alter such signatures, the tumour 
microenvironment may return to a baseline profile that is controlled by 
a variety of genetic or environmental factors that characterize a given 
person or tumour88. Another consideration in the study of predictive 
biomarkers is the potential variation in the immune phenotype of pri-
mary and metastatic lesions. In fact, studies in renal cell carcinoma 
and non-small cell lung cancer have found differences in the density 
of CD8-expressing tumour-infiltrating lymphocytes in primary and 
metastatic lesions89,90.

Elements that determine immune profiles
The factors that determine the baseline immune profile or cancer–
immune set point of a given tumour represent a key unknown, but 
they are likely to include variations in tumour genetics, germline 
genetics, age, the microbiome, the presence of infectious agents, 
exposure to sunlight and pharmacological agents (Fig. 4). Even for 
the same indications, the immunological profiles of tumours can vary 
from person to person. Although three basic immune phenotypes can 
be distinguished (as discussed previously), there is a wide continuum 
of cytokines, chemokines and immune and non-immune tumour-
associated cell types that determine whether sufficient inflamma-
tion is present to favour the development of an effective antitumour 
immune response following immunotherapy. A presumptive popu-
lation distribution of patients is depicted as a bell curve in Fig. 4. 
Small variations in factors — rather than dramatic alterations — may 
be sufficient to tip the balance between tolerance and immunity. 
Together, these factors act by promoting the predominance, even if 
subtle, of various inflammatory states, and they may also be associ-
ated with a particular immune profile and degree of clinical response. 
For people who fall near to the top of the distribution curve, where 
the extent of variation is low, the response (or lack of response) to 
immunotherapy may be influenced strongly by stochastic consid-
erations. Not all people with inflamed, PD-L1-expressing tumours 
are responsive to PD-L1/PD-1 blockade. It is therefore reasonable to 
presume that the ability of anti-PD-L1/PD-1 therapies to promote 
antitumour immunity may be stochastic, with the probability of a 
response reflecting the immune status, or immune set point, that is 
associated with each tumour.

How the factors that influence the balance between tolerance 
and immunity combine to affect the cancer–immune set point 
remains to be elucidated, and this will probably be addressed only 
by large-scale, quantitative data sets that score a level of benefit to 
immunotherapy as a function of the immunomodulatory variables 
present. Figure 5 maps how the factors that are proposed to establish 
a person’s immune profile (tumour genetics, germline genetics, the 
microbiome, the environment and the presence of certain pharma-
cological agents) can be arranged in relation to the seven steps of the 
cancer–immunity cycle. It should be noted that this representation is 
only a partial list and that factors will be added, removed or modified 
in the future.

Tumour genetics and epigenetics
As described previously, it is probable that the mutation burden of a 
given tumour will contribute to its immune profile. Perhaps the clear-
est association is demonstrated by the overall mutational burden. The 
greater the number of mutations in a given tumour, the more probable 
it is that some of the mutations will be immunogenic, providing targets 
for T-cell attack1,85,86,91. Mutations that arise early in oncogenesis and are 
shared by almost all of the cancer cells in an individual (known as trun-
cal mutations) may generate more effective anticancer T-cell responses 
than mutations that arise later on and are limited to only a subpopula-
tion of cancer cells (known as branch mutations)2.

Although mutations are generally thought to promote T-cell-
mediated immunity, some — especially, cancer-associated driver 
mutations — may act to attenuate immune responses. For example, 
mutations in the genes KRAS and BRAF or other mutational activations 
of the MAP kinase pathway will decrease the transcription of MHC 
class I molecules as well as the expression of other genes encoding 
molecules that are essential for peptide loading92–95. These alterations 
might reduce inflammation in tumours and the killing of tumour cells 
by decreasing the density of T-cell ligands on tumour cells.

The systematic analysis of tumour genomes should reveal further 
information about the relationship between tumour genetics and the 
tumour microenvironment. One such study demonstrated that recur-
ring mutations in genes that control the expression of MHC class I 
products or cell death in tumours (such as caspase 8) affect the degree 
of inflammation in a tumour88. The study also found that tumours can 
selectively increase, through amplification or enhanced transcription, 
the expression of genes that encode proteins associated with immu-
nosuppression, including PD-L1, the arachidonate lipoxygenases and 
IDO-1 and IDO-2.

Changes in gene expression in tumours owing to epigenetic modifi-
cations and the expression of microRNAs probably contribute directly 
to determining the immune microenvironment and immunogenicity 
of a tumour. Cytokine expression during T-cell development is regu-
lated by epigenetic alterations to both DNA and chromatin96. Cancer 
can also be accompanied by epigenetic changes, which makes it prob-
able that such changes will influence cytokine profiles that modulate 
the immune microenvironment. In fact, DNA methylation in lung-
cancer cells has been shown to reduce the expression of IL-1β97. And 
PD-L1 expression can be modulated by microRNAs, with miR-200 (a 
repressor of epithelial-to-mesenchymal transition) and possibly others 
decreasing its expression98. Methylation of the promoter for the gene 
PD-L1 itself also seems to repress PD-L1 expression; demethylation 
can result in constitutive expression in tumours, especially non-small 
cell lung cancer99.

Another influence on the immune profile of a tumour that has an 
epigenetic mechanism involves the tissue of origin of the tumour. 
Colorectal cancer tumours commonly express elevated levels of 
transforming growth factor (TGF)-β100. Presumably, this reflects the 
importance of the TGF-β pathway in intestinal biology and, especially, 
its role in maintaining tolerance to the gut microbiota by favour-
ing the development of regulatory T cells101. Elevated expression of 
TGF-β may also contribute to the development of abundant stromal 
elements in these tumours that can restrict the access of immune cells 
to the tumour parenchyma, as has been demonstrated in pancreatic 
cancer102. Although other factors also contribute, it is interesting 
to note that pancreatic cancer and most forms of colorectal cancer 
(except for the mutationally rich microsatellite-instability-high sub-
group85) respond poorly to single-agent inhibition of PD-L1/PD-1 
(refs 62, 83 and 103–105).

Host genetics
People vary in their response to infectious stimuli and they also exhibit 
different susceptibilities to chronic inflammatory and autoimmune dis-
orders. This is mostly because of variation in the population in several 
immune-response genes106–108. It is probable that the same variation 
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also contributes to the inherent immune profile of a tumour and to the 
immune set point of a person with cancer. One such example relates to 
polymorphisms in the gene TLR4 in breast cancer, which are thought 
to affect the priming of antigen-specific T cells. People with a TLR4 
germline loss-of-function allele were found to respond less well to 
both radiotherapy and chemotherapy, suggesting the presence of an 
impaired immune response. However, it is unknown whether this allele 
also contributes to an alteration in the immune profile of pretreatment 
tumours. Polymorphisms at other immune-related loci (for example, 
genes that encode TNF-α, NF-κB, JAK/STAT proteins, FcγRIII, NOD2, 
autophagy related protein 16 (ATG16) and inflammasome pathway 
proteins) may also be associated with a diminished response to therapy 
in various indications and might influence the immune profile of pre-
treatment tumours.

Microbiome
Factors that are extrinsic to the tumour or host genomes may also 
affect the immune profile of tumours. Chief among these is the gut 
microbiome, which has an important role not only in influencing the 
initiation of some cancers, but also in the response to chemotherapy and 
immunotherapy109–113. Goldszmid, Zitvogel and their colleagues dem-
onstrated that mice bearing subcutaneous syngeneic tumours do not 
respond to chemotherapy if sterilized by prior treatment with antibiotics 
or when raised in germ-free conditions110,113. The effect was attributed to 
the ability of commensal bacteria to activate the innate immune system 
of the host following chemotherapy, possibly by causing dysbiosis and 
penetration of commensal bacteria into the gut lamina propria.

Subsequent work established an even clearer link between T-cell 
responses and an intact microbiota111,112. Faecal transfer or co-housing 
experiments in mice demonstrated that defined species of gut bacteria 
enabled antitumour responses after treatment with anti-PD-L1/PD-1 
or anti-CTLA4 therapies. Furthermore, the gut microbiota even influ-
enced spontaneous antitumour responses, which correlated with the 
degree of T-cell infiltration into tumours before any therapy had been 
administered111.

Under the assumption that these findings also apply to humans, 
the degree to which a person’s gut microbiome promotes antitumour 
immunity may be an important determining factor of both the base-
line immune profile of a tumour and the cancer–immune set point 
of an individual. Indeed, resistance to drug-induced colitis (an 
adverse side effect that is associated with the anti-CTLA4 antibody 
ipilimumab) was found to be related to the presence of specific classes 
of bacteria114.

Environmental and other factors that influence immunity
Immunity in humans can also be affected by environmental factors. 
These include the presence of infectious agents, diet and the intake of 
pharmaceuticals. Agents that lower cholesterol have been associated 
with altered immune responses. For example, chronic statin therapy 
has been associated with a reduced response to the influenza vaccine in 
elderly people115. Intriguingly, even exposure to sunlight may influence 
immunity, which is referred to as photoimmunity. Human immune 
responses during periods of decreased exposure to sunlight are associ-
ated with enhanced levels of IL-6 and C-reactive protein, which are 
linked to an increased propensity for autoimmunity116. Conceivably, 
conditions of low sunlight may correlate with a more inflammatory 
systemic environment, leading to better responses to cancer immuno-
therapy. Although not strictly an environmental factor, alterations in 
immune activity as a function of age may also be an important variable 
in determining the immune response117,118.

The importance of the cancer–immune set point
The cancer–immune set point is the threshold that must be overcome 
to generate effective cancer immunity. The set point can be understood 
as a balance between the stimulatory factors (Fstim) minus the inhibitory 
factors (Finhib), which together must be equal to or greater than 1, over 

the summation of all T-cell antigen receptor (TCR) signals for tumour 
antigens. The cancer–immune set point is shown here:

∫ (Fstim) − ∫ (Finhib) ≥ 1 ∕ ∑ n=1, y (TCRaffinity × frequency)

The set point is defined by the summation of the frequency of 
peptide–MHC–TCR interactions and TCR signalling in all antican-
cer CD8+ T-cell clones (mainly, the TCR affinity for the antigen–MHC 
class I complex) against antigens present in the cancer cells, including 
neoantigens and cancer-associated antigens, and the endogenous bal-
ance of the positive and negative immune regulators that are inherent 
to each host or patient. This can be further influenced by other elements 
of immunity, including tumour-derived immunomodulatory compo-
nents, as well as by exogenous factors such as infection and exposure 
to pharmacological agents. A given patient with cancer may have a low 
set point, making it easier to generate an anticancer immune response, 
or a high set point, which makes it more difficult. The aim of immu-
notherapy is to increase Fstim, decrease Finhib or increase TCR signal-
ling to drive progression of the cancer-immunity cycle. These values 
are difficult to quantify with current techniques but represent a useful 
theoretical construct.

It is probable that the cancer–immune set point of a particular person 
is already determined by the time of clinical presentation, driven by the 
inherent immunogenicity of the tumour and by the responsiveness of 
the individual’s immune system. Although it is reasonable to assume 
that various lines of cancer therapy or changes in environmental factors 
might alter Fstim and Finhib, such changes might only be transient. Often, 
the set point that is identified using pretreatment biopsies is similar to 
the set point determined by biomarker profiling from biopsies taken 
on progression after therapy87. Likewise, despite the continued accu-
mulation of mutations in a tumour as a function of time, primary and 
metastatic lesions can exhibit similar immune profiles. The features 
that determine the set point may therefore reflect genetic factors that 
are specific to a given tumour, the genetics of the person with cancer, 
or the extent to which antitumour immunity had developed initially. 
Conceivably, immunotherapy may work as a consequence of either its 
direct effect on Fstim and Finhib (that is, by assisting the completion of a 
single revolution of the cancer-immunity cycle) or its ability to alter 
the set point (for example, by propagating the cancer-immunity cycle, 
which enhances the cancer-specific T-cell response).

Although largely conceptual, the idea of a set point provides a frame-
work to help organize the torrent of clinical and biomarker data that 
will emerge over the coming months and years. The number of targets 
that could prove effective for cancer immunotherapy is great; the num-
ber of potential combinations of therapeutic agents that are directed 
against these targets (or combinations of such agents with conventional 
standard-of-care agents) is even greater (Supplementary Fig. 1). The 
development of some cancer therapies may be largely empirical, but it 
can be guided by considering, even in general terms, the elements that 
comprise cancer immunity. ■
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